CPP REVISION-2

METALLURGY, d-BLOCK AND f-BLOCK ELEMENTS

	-	ig the lowest degree of	t paramagnetism per mole	of the compound at 298k will sho				
	Amongst the following the lowest degree of paramagnetism per mole of the compound at 298k will sho							
	by		(C) FeSO ₄ .6H ₂ O					
,			· · · _	· · · -				
			works the green coloured	•				
	(A) CrO ₃	(B) Cr ₂ O ₃	(C) Cr	(D) $CrO(O_2)$				
8.	Which of the following statement correct about dichromate anion?							
	(A) 4 Cr-O bonds are equivalent (B) 6 Cr-O bonds are equivalent (D) All Cr-O bonds are pop equivalent							
ŀ.	(C) All Cr-O bonds are equivalent (D) All Cr-O bonds are non equivalent Froth-floatation method is successful in separation of impurities from ores because							
•	(A) The pure ore is lighter than water							
	(B) The pure ore is soluble in water containing additives like pine oil, cresylic acid etc							
	(C) The impurities are soluble in water containing additives like pine oil, cresylic acid etc							
	(D) The pure ore is not as easily wetted by water as by pine oil, cresylic acid							
5.	Magnetic separation	is used for increasing c	concentration of the following	ng				
	(A) Horn silver	(B) Calcite	(C) Haematite	(D) Magnesite				
ò.	Which method of pur	ification is represented	by the equation?					
	$Ti + 2l_2 \xrightarrow{500 \text{ K}} Til_4 \xrightarrow{1675 \text{ K}} Ti + 2l_2$							
	(Impure)	pure						
	(A) Cupellation	(B) Poling	(C) Van Arkel	(D) Zone refining				
		-	y electrolysis of the aqueo					
	(A) Ag	(B) Mg and Al	(C) Cu	(D) Cr				
8.		owing is not a sulphide		(D) On hala site				
).	(A) Magnetite	(B) Iron pyrites	(C) Copper glance	(D) Sphalerite				
-	Which of the following condition favours the reduction of metal oxide to metal? (A) $AH = 1x0$ TAS = 1x0 at low temperature (B) $AH = 1x0$ TAS = 1x0 at any temperature							
	(A) $\Delta H = +ve$, $T\Delta S = +ve$ at low temperature (B) $\Delta H = +ve$, $T\Delta S = -ve$ at any temperature (C) $\Delta H = -ve$, $T\Delta S = -ve$ at high temperature (D) $\Delta H = -ve$, $T\Delta S = +ve$ at any temperature							
0.	(C) $\Delta H = -Ve$, $T\Delta S = -Ve$ at high temperature (D) $\Delta H = -Ve$, $T\Delta S = +Ve$ at any temperature What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?							
0.	(A) $Cr_2O_7^{2-}$ and H_2O are formed (B) $Cr_2O_4^{2-}$ is reduced to +3 state of Cr							
	(C) $\operatorname{Cr}_2\operatorname{O}_4^{2^-}$ is oxidised to +7 state of Cr (D) $\operatorname{Cr}_2\operatorname{O}_3$ and $\operatorname{Cr}_2\operatorname{O}_7^{2^-}$ are formed							
1.	The radius of La^{+3} (atomic number of $La = 57$) is 1.06 A ⁰ . Which one of the following given values will be							
	closest atomic radius of Lu^{+3} (atomic number of $Lu = 71$)							
	(A) 1.40 A ⁰	(B) 1.06 A ⁰	(C) 0.85 A ⁰	(D) 1.60 A ⁰				
2.	Cryolite is							
	(A) Na_3AIF_6 and used in the electrolysis of alumina for decreasing electrical conductivity							
	(B) Na_3AIF_6 and used in the electrolysis of alumina for lowering the melting point of alumina							
	(C) Na_3AIF_6 and used in the electrolytic purification of alumina							
2	(D) Na ₃ AIF ₆ and used in the electrolysis of alumina							
3.	Which of the following substance used as froth stabilizers in froth floatation process is(A) Copper sulphate(B) Aniline(C) Sodium cyanide(D) Potassium ethyl xanthate							

Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942

14.	The form of iron obtained	from blast furnace is						
	(A) Steel (E	B) Wrought iron	(C) Ca	st iron	(D) Pig iron			
15.	Which of the following ore is best concentrated by froth floatation method?							
	(A) Magnetite (E	B) Siderite	(C) Ga	ilena	(D) Malachite			
16.	The pair that does not require calcination							
	(A) ZnO and MgO			(B) Fe_2O_3 and $CaCO_3$.MgCO ₃				
	(C) ZnO and Fe ₂ O ₃ .xH ₂ O		(D) ZnCO ₃ and CaO					
17.	Match the ores (Column-A) with metals (Column-B)							
	Column –A	Column-B						
	(Ore)	(Metals)						
	i) Siderite	a) Zn						
	ii) Kaolinite	b) Cu						
	iii) Malachite	c) Iron						
	iv) Calamine	d) Aluminium						
	(A) $i-b; ii-c; iii-d; iv-a$ (C) $i-c; ii-d; iii-b; iv-a$		(B) i−c; ii−d; iii−a; iv−b					
			(D) $i - a; ii - b; iii - c; iv - d$					
18.	Hall-Heroult's process is given by							
	(A) $Cr_2O_3 + 2AI \longrightarrow Al_2O_3 + 2Cr$			(B) $Cu^{+2}_{(aq)} + H_{2(g)} \longrightarrow Cu(s) + 2H(+)_{(aq)}$				
	(C) $ZnO + C \xrightarrow{Coke}{1673k} Zn + CO$		(D) $2AI_2O_3 + 3C \longrightarrow 4AI + 3CO_2$					
19.	The ore that contain both Iron and copper is							
	(A) Malachite (E	B) Zolomite	(C) Az	urite	(D) Copper pyrite			
20.	The colour of KMnO ₄ is due to							
	(A) $L \rightarrow M$ charge transfer transition			(B) σ to σ^* transition				
	(C) $M \rightarrow L$ charge transfer transition			(D) d-d transition				
Numer	ical Based:							
	0			4	4			

21. The value of ΔG_f^0 for formation of Cr_2O_3 is -540 kJ mol⁻¹ and that of Al_2O_3 is -827 kJ mol⁻¹. What is the value of ΔG_f^0 for the reaction (in kj/mol)

$$\frac{4}{3}\text{Al}_{(s)} + \frac{2}{3}\text{Cr}_2\text{O}_{3(s)} \longrightarrow \frac{2}{3}\text{Al}_2\text{O}_{3(s)} + \frac{4}{3}\text{Cr}_{(s)}$$

- 22. The number of moles of KMnO₄ that will be needed to react with one mole of sulphite ion in acidic solution.
- 23. In German silver the percentage of silver is
- 24. How many of the following metals can be refined by vapour phase refining? Zr, Zn, Cd, Hg, Ni, Co, Pt, Fe, Ti
- 25. For Cu^{+2} , the spin only magnetic moment is (in BM)

					KEY				
1.	В	2.	В	3.	В	4.	D	5.	С
6.	С	7.	В	8.	А	9.	D	10.	А
11.	С	12.	В	13.	В	14.	D	15.	С
16.	А	17.	С	18.	D	19.	D	20.	А
21.	-287	22.	0.40	23.	0.00	24.	3.00	25.	1.73

FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 FIITJEE MIYAPUR CENTRE: Above Sai Motors Maruthi Showroom, Allwyn X Road, Miyapur, Hyderabad.