CPP REVISION-2

PARABOLA

SINGLE CORRECT OPTION TYPE

1.	The locus of the foo (A) $x^3 + xy^2 + ay^2 = 1$	t of the perpendicular d 0 (B) $y^3 + x^2y + ax^2 =$	rawn from the vertex on = 0 (C) $x^2 - xy^2 - ay^2$	any tangent to the parabola $y^2 = 4ax$ is = 0 (D) $y^3 - x^2y - ax^2 = 0$				
2.	If one end of the focal chord of the parabola $y^2 = 4x$ is (4, 4), then the other end is							
	$(A)\left(\frac{1}{4}, -1\right)$	(B) $\left(\frac{1}{4}, 1\right)$	(C) (1, 2)	(D) (1, -2)				
3.	A double ordinate o (A) 30°	f the parabola $y^2 = 4ax$ (B) 45°	is 8a. The lines from th (C) 60°	e vertex to its ends are inclined at (D) 90°				
4.	The length of the latus rectum of the parabola $3y^2 + 6y + 8x - 5 = 0$ is (A) 8/3 (B) 3/8 (C) 3 (D) 8							
5.	The vertex of the pa (A) (-4, 1)	arabola x ² + 8x + 12y + 4 (B) (4, -1)	4 = 0 is (C) (-4, -1)	(D) (4, 1)				
6.	The point on the cu (A) (1/2, 1/4)	rve y ² = x, the tangent a (B) (1/2, 1/2)	t which makes an angle (C) (2, 4)	e 45° with x-axis will be given by (D) (1/4, 1/2)				
7.	If (2, 0) is the vertex and y-axis, the directrix of a parabola, then its focus is (A) (2, 0)							
8.	The angle between (A) tan ⁻¹ (1/3)	the tangents drawn fror (Β) π/3	n the origin to the parab (C) $\pi/2$	pola $(x - a)^2 = -4a(y + a)$, is (D) none of these				
9.	The line x cos α + y (A) a = p sec α (C) a ² cos α + p ² sir	$\sin \alpha = p$ touches the p $\alpha = 0$		(B) a + p cos α = 0				
10.	PQ is any focal chord of a parabola. The angle θ between the tangent drawn at P and normal at Q is (A) 0 (B) $\pi/4$ (C) $\pi/3$ (D) none of these							
11.	The general system of parallel chords of the parabola $y^2 = 4x$ is $y = x + k$. the equation of the corresponding							
	diameter is (A) x – y = 2a	(B) x + y = a	(C) y = 2a	(D) x = a				
12.	If the line 4y – 3x – 2), is	8 = 0 cuts the parabola	$x^{2} + y - 4 = 0$ at A and	B, then PA.PB is equal to where $P \equiv (0, $				
	(A) 3	(B) 25/8	(C) √2	(D) 13/√5				
13.	A circle with its centre at the focus of the parabola $y^2 = 4ax$ and touching its directrix into the parabola at points A, B. Then length AB is equal to							
	(A) 4a	(B) 2a	(C) a/2	(D) None of these				
14.	The coordinates of the point on the parabola $x^2 = 4y$ which is nearest to the circle $(x - 3)^2 + y^2 = 1$, are							
	(A) (0, 0)	(B) (-2, 1)	(C) (2, 1)	(D) (-4, 4)				
15.	If the normal to the parabola $y^2 = 4ax$ at point t_1 cuts the parabola again at point t_2 , then							
	(A) $2 \le t_2^2 \le 8$	(B) $t_2^2 \le 2$	(C) $t_2^2 \ge 8$	(D) none of these				

FIITJ€€ MIYAPUR CENTRE: Above Sai Motors Maruthi Showroom, Allwyn X Road, Miyapur, Hyderabad. **Regd. Off.**: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942

16.	The chord $x + y = 1$ cuts the parabola $y^2 = 4ax$ in points A, B. The normals at A and B intersect at C. A third line from C cuts the parabola normally at D whose coordinates are								
	(A) (a, -2a)	(B) (4a, 4a	•	C) (0, 0)	(D) none of thes	e			
17.	The triangle form $\int_{-2}^{2} dz^{21}$ the ord	The triangle formed by the tangent to the parabola $y^2 = 4x$ at the point whose abscissa lies in the interval [a ² , 4a ²], the ordinate and the X-axis, has greatest area equal to							
	[a , 4a], the ordi	(B) 8a ³		area equal to C) 16a ³	(D) none of thes	e			
18.	The parabolas y of k is	The parabolas $y = x^2 - 9$ and $y = kx^2$ intersect at points A and B. If length AB is equal to 2a, then the value of k is							
	(A) $\frac{a^2 - 9}{a^2}$	(B) 9/a ²	(0	C) a ² + 3	(D) none of thes	е			
19.	If the tangents are points A, B on a parabola meet in T, then the focal distances of the points SA, ST and SB are in								
	(A) A.P.	(B) G.P.	(0	C) H.P.	(D) none of thes	е			
20.	A.P., then slopes	If the normals from any point to the parabola $x^2 = 4ay$ cuts the line $y = 2$ in points whose abscissa are in A.P., then slopes of tangents at the three co-normal points are in							
	(A) A.P.	(B) G.P.	(0	C) H.P.	(D) None				
NUMI	ERICAL BASED								
21.	A trapezium is inscribed in the parabola $y^2 = 4x$ such that its diagonal pass through the point (1,0) and								
	each has length $\frac{25}{4}$. If the area of trapezium be P then 4P is equal to 15k then k =								
22.	Three normals d	Three normals drawn from any point to the parabola $y^2 = 4ax$ cut the line $x = 2a$ in points whose ordinates							
	are in arithmetic progression. If the slopes of the normals be m_1, m_2 and m_3 then $\left(\frac{m_1}{m_2}\right) \left(\frac{m_3}{m_2}\right)$ is equal to								
23.		Let the maximum and minimum values of the areas of the triangles formed by x-axis, tangent and normal at a point on the segment of parabola $y = x^2 + 1, 1 \le x \le 3$ be A ₁ and A ₂ respectively then $3A_1 + A_2$ is equal							
	to λ then Integral part of $\frac{\lambda}{100} =$								
	to , then integr	100							
24.	Normal at P to	100		· · · · · · · · · · · · · · · · · · ·	neets the line 12x-	+5y+3=0 at G			
24. 25.	Normal at P to perpendicular G Area of a triangle	o the parabola (N is drawn to SP	(S=focus) the	n NP =	neets the line $12x - 12x + 1$				
	Normal at P to perpendicular G Area of a triangle	o the parabola (N is drawn to SP e formed by the ta	(S=focus) the	n NP = $om a point (-2,2)$					
	Normal at P to perpendicular G Area of a triangle	o the parabola N is drawn to SP e formed by the ta hord of contact is	(S = focus) then	n NP = $om a point (-2,2)$					
25.	Normal at P to perpendicular G Area of a triangle corresponding ch A 2	o the parabola N is drawn to SP e formed by the ta hord of contact is	(S = focus) then ngents drawn fro KE	n NP = om a point (-2,2) EY	to the parabola $y^2 =$	4(x+y) and their A			
25. 1.	Normal at P to perpendicular G Area of a triangle corresponding ch A 2 D 7	the parabola (N is drawn to SP) e formed by the ta hord of contact is 2. A	(S = focus) then ngents drawn fro KE 3. D	n NP = om a point (-2,2) EY 4.	to the parabola $y^2 =$ A 5.	4(x+y) and their A			
25. 1. 6.	Normal at P to perpendicular G Area of a triangle corresponding ch A D 7 C 1	the parabola (N is drawn to SP formed by the ta hord of contact is A A C C	(S = focus) then ngents drawn fro KE 3. D 8. C	n NP = om a point (-2,2) EY 4. 9.	to the parabola $y^2 =$ A 5. D 10	4(x+y) and their A A C			

FIITJ€€ KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 FIITJ€€ MIYAPUR CENTRE: Above Sai Motors Maruthi Showroom, Allwyn X Road, Miyapur, Hyderabad.